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1. INTRODUCTION

The Space COntrol Labaratory Experiment (SCOLE) is a challenge for control

engineering applications. This is a result of the system dynamics, the available mea-

surement information, the actuator capabilities and finally the specified performance

requirements set.

Results on the use of Model Reference Adaptive Control have already been re-

ported [1]. In view of the necessity for rapid response, this work deals with an optimal

control formulation, with a minimum time requirement and constrained input.

In Section 2 a mathematical statement of the problem is presented. The time

optimal control formulation is presented in Section 3, and the reasons that make such

an approach not promising are discussed. As a result, a pseudo time-optimal control

algorithm is presented in Section 4. In Section 5, the proposed approach is tested

to see if it satisfies the design specifications, and finally in Section 6, discussion and

suggestions for luther research are provided.



2. BRIEF STATEMENT OF THE PROBLEM

The antenna-beam system to be controlled is modelled as:

= A. x + B • u A E _12x12,B E _12x3

Only the 12th order approximation of the distributed parameter system is considered

here. The states are organized in the form of modes, that is x21_l:position, x2i:velocity,

i = 1,2, ..., 6. The modes are dynamically decoupled, as can be seen from the structure

of matrix A:

A ._.

•/1 0 0 ...

o .;2 o ...

: : "'. 0

0 0 0 J6

J_

However, the coupling is introduced by matrix B where all three controls affect

all the modes:

B= Bi =

' B1 "

I°°°}
Z Bil Bi2 B,3

,B6

The output to be controlled is

y = = Cp ° x Cp E _:_2×12

Y

where yl, Y2 are the X and Y coordinates of the tip of the antenna, and

?Cpl 1 0 Cpl 3 0 ... Cp16 O)G={G21_ o cp23 o ... c_26 o

The actual measured output is

ym = Cm • x C,, E R3x12.



where

Cm _-

! Cmn 0 Cm,3 0 ... Cm:6
Cm21 0 Cm23 0 ... Cm26

Cm31 0 C_33 0 ... Cm36

Obviously, the output matrix Cp incorporates at the desired output only the position

component states, while Cm maps at the output only the velocity components of the

modes.

Given an initial output, such that the displacement Jly(O)[I = do = 1 ft, it is

desired to transfer the state vector to x(tf) = 0 in minimum time t], subject to the

constraints

luil < U i=1,2,3

where U = 6.25. The numerical values of matrices A, B, Cp, Cm can be found in [1].

Starting with an initial state at time t = 0:

x_(0)=[-3.3013 0 -0.71870 ... 01T

corresponding to the initial output

y(0) = x (0) = ]ly(0)ll= do = 1 It
11.3842

the output of the free response of the system is shown in fig. 1. It is obvious that the

settling time is t I > 1000 sec.

In order to improve the response of the system, the following design specifications

were considered:

• The decision should be a feedback controller.

• If possible, explicit use of observers should be avoided.

• The decision scheme should be implementable in an ON-LINE fashion.
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• The designshouldprovide a controller robust with respectto initial state and

to parameteruncertainties.

In the sequel,a descriptionof the waysthat the problemwasattackedis presented,

and simulation results are given and analyzedfor performanceevaluation. Finally

suggestionsfor improvementsaregiven.

3. THE MINIMUM TIME PROBLEM

The first approachtowardstrying to solvethe aboveproblemwas to formulate it

asthe simpleminimum time control problem:

rain t l
u

s.t

2,=A.x+B.u

• (o)= x(tD =o

[uil<U i = 1,2,3

Numerical implementation of this optimal control problem requires its transfor-

mation to a Two Point Boundary Value Problem (TPBVP). Such a transformation

is obtained by introducing the scalar variable

t

tf

thus transforming the problem to the equivalent

n_n z • dr

s.t

x' = (A. x + B. u). z,

zl=O

(.)'_ a(.)
dr



x(0)=xo x(1)=0

[uil<U i=1,2,3

Solution of the above problem using multiple shooting methods, was not possible due

to numerical difficulties. The major problem is the almost marginal stablitiy of the

system that makes necessary the use of very small sampling intervals, and thus a very

large number of intervals and parameters.

Another approach to solving the above problem was that of [2], which in fact

transforms the infinite dimensional problem to a finite dimensional one. A series of

Linear Programs have to be solved. Similarly, the large number of variables along with

the resulting constraints that are extremely restricting, made the solution impossible.

4. THE PSEUDO-MIMIMUM TIME PROBLEM

All the above problems that led to numerical instabilities convinced us that find-

ing a minimum time control with the optimal control formulation presented above, is

a very difficult task. Its application would be even harder due to the fact that it is

open-loop control and therefore non-robust. Additionally, minimum time control tra-

jectories obtained for reduced order subsystems showed that the controller saturation

levels were changing signs every 3ms making the implementation impossible. There-

fore another approach was adopted; namely, the LQ Regulator with fixed function of

final state [3]. Such an approach is defined as follows:

SYSTEM

xk+l = A- xk + B. uk

PERFORMANCE INDEX

i T IN-I

J = _x N. S. XN + _ _(x T" Q" xk + u T" R. uk)
k=0

SN>_O, Q>_o, R>0
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FINAL STATE CONSTRAINT

OPTIMAL CONTROL LAW

Cp'xN=O

Kk = (B T" Sk+l " B + R) -1 • B T. S/c+t • A SN : given

Sk = A T. Sk+l " (A - B. K/C) + Q

v/c = (A- B . g/c) T. V/c+l VN = C T

PI, = Pie+, - vkT+, " B. (B T . Sk+, " B + R)-' .

If_' = (B T. S/C+1 • B + R) -1

ak = -(K/c- V/c+,.pfl

B T. Vk+ 1

•B T

.v[)

PN=0

u/c = Gk • xk

Obviously this is a state feedback controller. The measurements matrix Cm con-

tains linear combinations of the velocities of the modes. Therefore state x can be

derived only by using an observer. An effort to avoid observer utilization is reported

in the next section.

The approach, described above, allows much flexibility in the selection of the

parameters of the matrices S, Q, R. Since the output constraint considers only the

linear combination of the position components of the states, the state can be reduced

by penalizing the final state, i.e by having a large S matrix. In the present set of

experiments, S was 50000 * I. The selection of the R matrix directly affects the

maximum value of the control trajectories. However since the bounds in all controls

are the same, R was chosen diagonal with the same elements for all controls. In the

present set of simulations R was I. Finally, the selection of Q matrix, provides some

valid flexibility since it is obvious from the control structure that the control values
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are directly proportional to the states. An iterative adjustment was made using

maxte[o.t/](x_)

q" -- EiL1 maxte[o,tj](x 2)

Finally, the number of steps N that define the final time if, have to be found exper-

imentally based on the selected strategy.

As an example, consider again the initial state

x_---- [-3.3013 0 - 0.71870 ... O]T

corresponding to Ily(0)ll = x ft. Using the proposed controller, the system's re-

sponce can be shown by the trajectories of the two components of the output yk =

Cp.xk that are shown in fig.2. The corresponding optimal control trajectories

ui_ i = 1,2 are shown in fig. 3 (because u3 is of the order of 10 -1, it was not

shown). Inspection shows that the output is lead to zero while the input satisfies

the constraints. The settling final time was found to be t I = 130 sec which is

considerably less than the settling time of t s > 1000 sec of the free system of fig.1.

5. DESIGN SPECIFICATIONS TESTING

The proposed approach might be considered an ON-LINE procedure, because the

set of feedback gains Gk can be computed fast. This is so, because the computation of

Gk's is not iterative, but it is straightforward. It is also a feedback policy because the

control input is given by uk = Gk. xk. However this is state feedback, and not output

feedback as required. Additionally, a problem with this approach is that although tile

output is going to be lead to zero for every initial state, the input uk is not guaranteed

to be bounded by U. If the only considered measurements are ymk = Cm.xk, (i.e linear

combinations of velocities), then either the explicit or the implicit use of observers is

unavoidable.

Assuming that the desired ouput yk = Cp.xk is available, an attempt to obtain an

approximate estimate of the state, was the following: Matrix Cp is not square, and
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thereforean invertible submatrix C'p C N2×2 of Cp was sought, so that

' = (c'p)-' ykX k

and

_k=[x_(1) 0 x_(2) 0 ... 0] T

could be used as an approximation to xk. By considering the first two modes of the

system as dominant, matrix C_ was constructed as

cL = [ca,, ca,,].

Still, this approach did not seem to work as can be seen by the following example:

Assume that at time t = 0 the system is at state

x0_=[0 0 0 0 0.3018 0 56.0972 0 ... 01r.

corresponding to an ouput, y0 = Cp-xg = [0.7589 2.2768] T with Ily011= 2.4 in.

Obviously, the magnitude of this initial deviation is smaller than the 12 in require-

ment, but this was done because of memory constraints of the computing system

used. According to the above scheme, the estimated initial state corresponding to

Y0 was

_1 -.. (CL)-l.y0 ._ [-0.6603 0 - 0.14370 ... 0] T.

This was the state that the controller actually "observed" at t = 0. Using _01 as an

initial estimate of the state, a set of gain matrices Gk k = 1,2,...N was obtained by

the algorithm of section 4. N was chosen in a such a way that the input

Uk = Gk " xk

of the fictitious system:

Xk+l = A.xk +B. uk Xo = _



are boundedby U. Since boundedness depends on the initial state, we denote the set

of gains obtained for this fictitious system by Gk(ko x) k = 1,2, ...N, in order to show

that these gains were selected based on k01.

The response of the output of the fictitious system is shown in fig. 4, and the

inputs ui i = 1,2, 3 of the fictitious system which are always less than U = 6.25 are

shown in figures 5,6 and 7 respectively. The final time for the fictitious system was

found to betl= 13 sec.

However, the initial state was not k_ but actually x_ which was essentially un-

known to the controller. The control gains Gk(3c_) were calculated based on the esti-

mate _0_ of the initial state, and unfortunately, the control inputs uk = Gk-[(C'p) -1 "Yk]

that were actually fed to the system, exceeded by far the bound U = 6.25, while the

actual output yk was not lead to zero. Even an increase of the final time ty from

13 sec to tl = 100 .sec at the fictitious system (which meant the calculation of a

whole new set of gains Gk(k0 x) k = 1,2, .... N') did not give better results, as can be

seen in figures 8 and 9 for y(1),y(2),u(1) and u(2) respectively.

Finally, the robustness properties to parameters variation were tested by increas-

ing the resonant frequencies of the system by 10%. Using as initial state the previously

used x02, the set of gains obtained for the nominal system for tl = 13 sec and finally

assuming state feedback, the "perturbed" system's output was lead to zero as shown

in fig. 10, however the control (fig. 11) exceeded U. The responces for this perturbed

system do not seem to be much different than these of the nominal (fig. 4,5,6). An

increase of the final time to tl = 15 sec seems to resolve the problem since the

output is lead to zero (fig. 12) and the control is now bounded (fig. 13). These can

be compared to the corresponding reponses of the nominal system for tl = 15 sec

cited at (fig.14 and 15).

6. DISCUSSION

It is obvious, that the proposed scheme requires knowledge of the full system state



for efficient implementation. In this case the system performs acceptably since the

output is lead to zero, while the state, because of the penalty imposed by matrix S

is lead close enough to zero. Additionally, the properties of the control scheme with

respect to system parameters variation are satisfactory if a larger final time is chosen

for the nominal system. The on-line calculation of G(t) will not be a big issue if

current parallel computation schemes are utilized [4].

In the case that the only available measurement is y,,, = Cm • x, which is a

linear combination of the velocities of the system, then no obvious way to guarantee

performance exist other than use of an observer.
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